牛顿一生发明了多少东西?

网上有关“牛顿一生发明了多少东西?”话题很是火热,小编也是针对牛顿一生发明了多少东西?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。

他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。

在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律[1]? 。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。

在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。

在经济学上,牛顿提出金本位制度。

在天文学方面,1672年牛顿创制了反射望远镜;他还解释了潮汐的现象,指出潮汐的大小不但同朔望月有关,而且与太阳的引力也有关系;另外,牛顿从理论上推测出地球不是球体,而是两极稍扁、赤道略鼓,并由此说明了岁差现象等。? 在物理学上,牛顿基于伽利略、开普勒等人的工作,建立了三条运动基本定律和万有引力定律,并建立了经典力学的理论体系。在数学上,牛顿创立了“牛顿二项式定理”,并和莱布尼兹几乎同时创立了微积分学。在光学方面,牛顿发现白色日光由不同颜色的光构成,并制成“牛顿色盘”;关于光的本性,牛顿创立了光的“微粒说”。? 在牛顿的著作《自然科学原理》中,他用数学解释了哥白尼的日心说和天体运动的现象。? 牛顿对人类的贡献是巨大的,正如恩格斯所说:“牛顿由于发明了万有引力定律而创立了科学的天文学;由于进行了光的分解,而创立了科学的光学;由于创立了二项式定理和无限理论而创立了科学的数学;由于认识了力的本质,而创立了科学的力学”。为纪念牛顿的贡献,国际天文学联合会决定把662号小行星命名为牛顿小行星。

力学成就

1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。[6]?

《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。[6]?

由于《原理》的成就,牛顿得到了国际性的认可,并为他赢得了一大群支持者:牛顿与其中的瑞士数学家尼古拉·法蒂奥·丢勒建立了非常亲密的关系,直到1693年他们的友谊破裂。这场友谊的结束让牛顿患上了神经衰弱。[6]?

牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律):

第一定律(即惯性定律)

任何一个物体在不受任何外力或受到的力平衡时(Fnet=0),总保持匀速直线运动或静止状态,直到有作用在它上面的外力迫使它改变这种状态为止。

第二定律

①牛顿第二定律是力的瞬时作用规律。力和加速度同时产生、同时变化、同时消逝。②F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。③根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。

牛顿第二定律的六个性质:①因果性:力是产生加速度的原因。②同体性:F合、m、a对应于同一物体。 ③矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。④瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。⑤相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。⑥独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度。

适用范围:①只适用于低速运动的物体(与光速比速度较低)。②只适用于宏观物体,牛顿第二定律不适用于微观原子。③参照系应为惯性系。两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。(详见牛顿第三运动定律)

第三定律

表达式 F=-F' (F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)

这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响。第一定律的内容伽利略曾提出过,后来R.笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容。第三定律的内容则是牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的结果之后得出的。

牛顿是万有引力定律的发现者。他在1665~1666年开始考虑这个问题。万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。1679年,R·胡克在写给他的信中提出,引力应与距离平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是像牛顿所设想的轨道是趋向地心的螺旋线。牛顿没有回信,但采用了胡克的见解。在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律。

牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系。正确地反映了宏观物体低速运动的宏观运动规律,实现了自然科学的第一次大统一。这是人类对自然界认识的一次飞跃。

牛顿指出流体粘性阻力与剪切率成正比。他说:流体部分之间由于缺乏润滑性而引起的阻力,如果其他都相同,与流体部分之间分离速度成比例。在此把符合这一规律的流体称为牛顿流体,其中包括最常见的水和空气,不符合这一规律的称为非牛顿流体。

在给出平板在气流中所受阻力时,牛顿对气体采用粒子模型,得到阻力与攻角正弦平方成正比的结论。这个结论一般地说并不正确,但由于牛顿的权威地位,后人曾长期奉为信条。20世纪,T·卡门在总结空气动力学的发展时曾风趣地说,牛顿使飞机晚一个世纪上天。

关于声的速度,牛顿正确地指出,声速与大气压力平方根成正比,与密度平方根成反比。但由于他把声传播当作等温过程,结果与实际不符,后来P.-S.拉普拉斯从绝热过程考虑,修正了牛顿的声速公式。[4]?

艾萨克·牛顿数学成就

牛顿微积分

大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。

在1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。

牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。

他在1669年被授予卢卡斯数学教授席位。在那一天以前,剑桥或牛津的所有成员都是经过任命的圣公会牧师。不过,卢卡斯教授之职的条件要求其持有者不得活跃于教堂(大概是如此可让持有者把更多时间用于科学研究上)。牛顿认为应免除他担任神职工作的条件,这需要查理二世的许可,后者接受了牛顿的意见。这样避免了牛顿的宗教观点与圣公会信仰之间的冲突。

17世纪以来,原有的几何和代数已难以解决当时生产和自然科学所提出的许多新问题,例如:如何求出物体的瞬时速度与加速度?如何求曲线的切线及曲线长度(行星路程)、矢径扫过的面积、极大极小值(如近日点、远日点、最大射程等)、体积、重心、引力等等;尽管牛顿以前已有对数、解析几何、无穷级数等成就,但还不能圆满或普遍地解决这些问题。当时笛卡儿的《几何学》和沃利斯的《无穷算术》对牛顿的影响最大。牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中。所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等。他说的“差率”“变率”就是微分。与此同时,他还在1676年首次公布了他发明的二项式展开定理。牛顿利用它还发现了其他无穷级数,并用来计算面积、积分、解方程等等。1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广。

微积分的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:“从这锋利的爪中我认出了雄狮”。

微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。

牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。

在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。

牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。

牛顿在前人工作的基础上,提出“流数(fluxion)法”,建立了二项式定理,并和G.W.莱布尼茨几乎同时创立了微积分学,得出了导数、积分的概念和运算法则,阐明了求导数和求积分是互逆的两种运算,为数学的发展开辟了一个新纪元。

二项式定理

在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。

二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方

推广形式

法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。[4]?

艾萨克·牛顿光学成就

牛顿曾致力于颜色的现象和光的本性的研究。1666年,他用三棱镜研究日光,得出结论:白光是由不同颜色(即不同波长)的光混合而成的,不同波长的光有不同的折射率。在可见光中,红光波长最长,折射率最小;紫光波长最短,折射率最大。牛顿的这一重要发现成为光谱分析的基础,揭示了光色的秘密。牛顿还曾把一个磨得很精、曲率半径较大的凸透镜的凸面,压在一个十分光洁的平面玻璃上,在白光照射下可看到,中心的接触点是一个暗点,周围则是明暗相间的同心圆圈。后人把这一现象称为“牛顿环”。他创立了光的“微粒说”,从一个侧面反映了光的运动性质,但牛顿对光的“波动说”并不持反对态度。

1704年,牛顿著成《光学》,系统阐述他在光学方面的研究成果,其中他详述了光的粒子理论。他认为光是由非常微小的微粒组成的,而普通物质是由较粗微粒组成,并推测如果通过某种炼金术的转化“难道物质和光不能互相转变吗?物质不可能由进入其结构中的光粒子得到主要的动力(Activity)吗?牛顿还使用玻璃球制造了原始形式的摩擦静电发电机。

提出光的微粒说

从1670年到1672年,牛顿负责讲授光学。在此期间,他研究了光的折射,表明棱镜可以将白光发散为彩色光谱,而透镜和第二个棱镜可以将彩色光谱重组为白光。

牛顿

他还通过分离出单色的光束,并将其照射到不同的物体上的实验,发现了色光不会改变自身的性质。牛顿还注意到,无论是反射、散射或发射,色光都会保持同样的颜色。因此,我们观察到的颜色是物体与特定有色光相合的结果,而不是物体产生颜色的结果。

从这项工作中,他得出了如下结论:任何折光式望远镜都会受到光散射成不同颜色的影响,并因此发明了反射式望远镜(现称作牛顿望远镜)来回避这个问题。他自己打磨镜片,使用牛顿环来检验镜片的光学品质,制造出了优于折光式望远镜的仪器,而这都主要归功于其大直径的镜片。1671年,他在皇家学会上展示了自己的反射式望远镜。皇家学会的兴趣鼓励了牛顿发表他关于色彩的笔记,这在后来扩大为《光学》(Opticks)一书。但当罗伯特·胡克批评了牛顿的某些观点后,牛顿对其很不满并退出了辩论会。两人自此以后成为了敌人,这一直持续到胡克去世。

牛顿认为光是由粒子或微粒组成的,并会因加速通过光密介质而折射,但他也不得不将它们与波联系起来,以解释光的衍射现象。而其后世的物理学家们则更加偏爱以纯粹的光波来解释衍射现象。现代的量子力学、光子以及波粒二象性的思想与牛顿对光的理解只有很小的相同点。

牛顿使用过的望远镜

在1675年的著作《解释光属性的解说》(Hypothesis Explaining the Properties of Light)中,牛顿假定了以太的存在,认为粒子间力的传递是透过以太进行的。不过牛顿在与神智学家亨利·莫尔(Henry More)接触后重新燃起了对炼金术的兴趣,并改用源于汉密斯神智学(Hermeticism)中粒子相吸互斥思想的神秘力量来解释,替换了先前假设以太存在的看法。拥有许多牛顿炼金术著作的经济学大师约翰·梅纳德·凯恩斯曾说:“牛顿不是理性时代的第一人,他是最后的一位炼金术士。”但牛顿对炼金术的兴趣却与他对科学的贡献息息相关,而且在那个时代炼金术与科学也还没有明确的区别。如果他没有依靠神秘学思想来解释穿过真空的超距作用,他可能也不会发展出他的引力理论。[4]?

艾萨克·牛顿热学成就

牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比。[4]?

艾萨克·牛顿天文成就

牛顿1672年创制了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。他还用万有引力原理说明潮汐的各种现象,指出潮汐的大小不但同月球的位相有关,而且同太阳的方位有关。牛顿预言地球不是正球体。岁差就是由于太阳对赤道突出部分的摄动造成的。[4]?

艾萨克·牛顿哲学成就

牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在。如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制。例如,他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念;他对那些暂时无法解释的自然现象归结为上帝的安排,提出一切行星都是在某种外来的“第一推动力”作用下才开始运动的说法。

《自然哲学的数学原理》牛顿最重要的著作,1687年出版。该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律。他说,该书“所研究的主要是关于重、轻流体抵抗力及其他吸引运动的力的状况,所以我们研究的是自然哲学的数学原理。”该书传入中国后,中国数学家李善兰曾译出一部分,但未出版,译稿也遗失了。现有的中译本是数学家郑太朴翻译的,书名为《自然哲学之数学原理》,1931年商务印书馆初版,1957、1958、2006年三次重印。

关于光的衍射和和干涉,要掌握哪些知识点,我要全面点的?

主要成就

力学成就

1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。[6]

《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。[6]

由于《原理》的成就,牛顿得到了国际性的认可,并为他赢得了一大群支持者:牛顿与其中的瑞士数学家尼古拉·法蒂奥·丢勒建立了非常亲密的关系,直到1693年他们的友谊破裂。这场友谊的结束让牛顿患上了神经衰弱。[6]

牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律):

第一定律(即惯性定律)

任何一个物体在不受任何外力或受到的力平衡时(Fnet=0),总保持匀速直线运动或静止状态,直到有作用在它上面的外力迫使它改变这种状态为止。

第二定律

①牛顿第二定律是力的瞬时作用规律。力和加速度同时产生、同时变化、同时消逝。②F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。③根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。

牛顿第二定律的六个性质:①因果性:力是产生加速度的原因。②同体性:F合、m、a对应于同一物体。 ③矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。④瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。⑤相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。⑥独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度。

适用范围:①只适用于低速运动的物体(与光速比速度较低)。②只适用于宏观物体,牛顿第二定律不适用于微观原子。③参照系应为惯性系。两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。(详见牛顿第三运动定律)

第三定律

表达式 F=-F' (F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)

这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响。第一定律的内容伽利略曾提出过,后来R.笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容。第三定律的内容则是牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的结果之后得出的。

牛顿是万有引力定律的发现者。他在1665~1666年开始考虑这个问题。万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。1679年,R·胡克在写给他的信中提出,引力应与距离平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是像牛顿所设想的轨道是趋向地心的螺旋线。牛顿没有回信,但采用了胡克的见解。在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律。

牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系。正确地反映了宏观物体低速运动的宏观运动规律,实现了自然科学的第一次大统一。这是人类对自然界认识的一次飞跃。

牛顿指出流体粘性阻力与剪切率成正比。他说:流体部分之间由于缺乏润滑性而引起的阻力,如果其他都相同,与流体部分之间分离速度成比例。在此把符合这一规律的流体称为牛顿流体,其中包括最常见的水和空气,不符合这一规律的称为非牛顿流体。

在给出平板在气流中所受阻力时,牛顿对气体采用粒子模型,得到阻力与攻角正弦平方成正比的结论。这个结论一般地说并不正确,但由于牛顿的权威地位,后人曾长期奉为信条。20世纪,T·卡门在总结空气动力学的发展时曾风趣地说,牛顿使飞机晚一个世纪上天。

关于声的速度,牛顿正确地指出,声速与大气压力平方根成正比,与密度平方根成反比。但由于他把声传播当作等温过程,结果与实际不符,后来P.-S.拉普拉斯从绝热过程考虑,修正了牛顿的声速公式。

数学成就

牛顿微积分

大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。

在1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。

牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。

他在1669年被授予卢卡斯数学教授席位。在那一天以前,剑桥或牛津的所有成员都是经过任命的圣公会牧师。不过,卢卡斯教授之职的条件要求其持有者不得活跃于教堂(大概是如此可让持有者把更多时间用于科学研究上)。牛顿认为应免除他担任神职工作的条件,这需要查理二世的许可,后者接受了牛顿的意见。这样避免了牛顿的宗教观点与圣公会信仰之间的冲突。

17世纪以来,原有的几何和代数已难以解决当时生产和自然科学所提出的许多新问题,例如:如何求出物体的瞬时速度与加速度?如何求曲线的切线及曲线长度(行星路程)、矢径扫过的面积、极大极小值(如近日点、远日点、最大射程等)、体积、重心、引力等等;尽管牛顿以前已有对数、解析几何、无穷级数等成就,但还不能圆满或普遍地解决这些问题。当时笛卡儿的《几何学》和沃利斯的《无穷算术》对牛顿的影响最大。牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中。所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等。他说的“差率”“变率”就是微分。与此同时,他还在1676年首次公布了他发明的二项式展开定理。牛顿利用它还发现了其他无穷级数,并用来计算面积、积分、解方程等等。1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广。

微积分的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:“从这锋利的爪中我认出了雄狮”。

微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。

牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。

在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。

牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。

牛顿在前人工作的基础上,提出“流数(fluxion)法”,建立了二项式定理,并和G.W.莱布尼茨几乎同时创立了微积分学,得出了导数、积分的概念和运算法则,阐明了求导数和求积分是互逆的两种运算,为数学的发展开辟了一个新纪元。

二项式定理

在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。

二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方

推广形式

法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。[4]

光学成就

牛顿曾致力于颜色的现象和光的本性的研究。1666年,他用三棱镜研究日光,得出结论:白光是由不同颜色(即不同波长)的光混合而成的,不同波长的光有不同的折射率。在可见光中,红光波长最长,折射率最小;紫光波长最短,折射率最大。牛顿的这一重要发现成为光谱分析的基础,揭示了光色的秘密。牛顿还曾把一个磨得很精、曲率半径较大的凸透镜的凸面,压在一个十分光洁的平面玻璃上,在白光照射下可看到,中心的接触点是一个暗点,周围则是明暗相间的同心圆圈。后人把这一现象称为“牛顿环”。他创立了光的“微粒说”,从一个侧面反映了光的运动性质,但牛顿对光的“波动说”并不持反对态度。

1704年,牛顿著成《光学》,系统阐述他在光学方面的研究成果,其中他详述了光的粒子理论。他认为光是由非常微小的微粒组成的,而普通物质是由较粗微粒组成,并推测如果通过某种炼金术的转化“难道物质和光不能互相转变吗?物质不可能由进入其结构中的光粒子得到主要的动力(Activity)吗?牛顿还使用玻璃球制造了原始形式的摩擦静电发电机。

提出光的微粒说

从1670年到1672年,牛顿负责讲授光学。在此期间,他研究了光的折射,表明棱镜可以将白光发散为彩色光谱,而透镜和第二个棱镜可以将彩色光谱重组为白光。

牛顿

他还通过分离出单色的光束,并将其照射到不同的物体上的实验,发现了色光不会改变自身的性质。牛顿还注意到,无论是反射、散射或发射,色光都会保持同样的颜色。因此,我们观察到的颜色是物体与特定有色光相合的结果,而不是物体产生颜色的结果。

从这项工作中,他得出了如下结论:任何折光式望远镜都会受到光散射成不同颜色的影响,并因此发明了反射式望远镜(现称作牛顿望远镜)来回避这个问题。他自己打磨镜片,使用牛顿环来检验镜片的光学品质,制造出了优于折光式望远镜的仪器,而这都主要归功于其大直径的镜片。1671年,他在皇家学会上展示了自己的反射式望远镜。皇家学会的兴趣鼓励了牛顿发表他关于色彩的笔记,这在后来扩大为《光学》(Opticks)一书。但当罗伯特·胡克批评了牛顿的某些观点后,牛顿对其很不满并退出了辩论会。两人自此以后成为了敌人,这一直持续到胡克去世。

牛顿认为光是由粒子或微粒组成的,并会因加速通过光密介质而折射,但他也不得不将它们与波联系起来,以解释光的衍射现象。而其后世的物理学家们则更加偏爱以纯粹的光波来解释衍射现象。现代的量子力学、光子以及波粒二象性的思想与牛顿对光的理解只有很小的相同点。

牛顿使用过的望远镜

在1675年的著作《解释光属性的解说》(Hypothesis Explaining the Properties of Light)中,牛顿假定了以太的存在,认为粒子间力的传递是透过以太进行的。不过牛顿在与神智学家亨利·莫尔(Henry More)接触后重新燃起了对炼金术的兴趣,并改用源于汉密斯神智学(Hermeticism)中粒子相吸互斥思想的神秘力量来解释,替换了先前假设以太存在的看法。拥有许多牛顿炼金术著作的经济学大师约翰·梅纳德·凯恩斯曾说:“牛顿不是理性时代的第一人,他是最后的一位炼金术士。”但牛顿对炼金术的兴趣却与他对科学的贡献息息相关,而且在那个时代炼金术与科学也还没有明确的区别。如果他没有依靠神秘学思想来解释穿过真空的超距作用,他可能也不会发展出他的引力理论。[4]

热学成就

牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比。[4]

天文成就

牛顿1672年创制了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。他还用万有引力原理说明潮汐的各种现象,指出潮汐的大小不但同月球的位相有关,而且同太阳的方位有关。牛顿预言地球不是正球体。岁差就是由于太阳对赤道突出部分的摄动造成的。

哲学成就

牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在。如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制。例如,他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念;他对那些暂时无法解释的自然现象归结为上帝的安排,提出一切行星都是在某种外来的“第一推动力”作用下才开始运动的说法。

《自然哲学的数学原理》牛顿最重要的著作,1687年出版。该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律。他说,该书“所研究的主要是关于重、轻流体抵抗力及其他吸引运动的力的状况,所以我们研究的是自然哲学的数学原理。”该书传入中国后,中国数学家李善兰曾译出一部分,但未出版,译稿也遗失了。现有的中译本是数学家郑太朴翻译的,书名为《自然哲学之数学原理》,1931年商务印书馆初版,1957、1958、2006年三次重印。

如果采用单色平行光,则衍射后将产生干涉结果。相干波在空间某处相遇后,因位相不同,相互之间产生干涉作用,引起相互加强或减弱的物理现象。 衍射的结果是产生明暗相间的衍射花纹,代表着衍射方向(角度)和强度。根据衍射花纹可以反过来推测光源和光栅的情况。 为了 衍射图样使光能产生明显的偏向,必须使“光栅间隔”具有与光的波长相同的数量级。用于可见光谱的光栅每毫米要刻有约500条线 。

1913年,劳厄想到,如果晶体中的原子排列是有规则的,那么晶体可以当作是X射线的三维衍射光栅。X射线波长的数量级是10^-8cm,这与固体中的原子间距大致相同。果然试验取得了成功,这就是最早的X射线衍射。 显然,在X射线一定的情况下,根据衍射的花样可以分析晶体的性质。但为此必须事先建立X射线衍射的方向和强度与晶体结构之间的对应关系。

编辑本段

光的衍射

光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。衍射时产生的明暗条纹或光环,叫衍射图样。

定义:光波遇到障碍物以后会或多或少地偏离几何光学传播定律的现 衍射示意图象。

包括:单缝衍射、圆孔衍射、圆板衍射及泊松亮斑

产生衍射的条件是:由于光的波长很短,只有十分之几微米,通常物体都比它大得多,但是当光射向一个针孔、一条狭缝、一根细丝时,可以清楚地看到光的衍射。用单色光照射时效果好一些,如果用复色光,则看到的衍射图案是彩色的。

任何障碍物都可以使光发生衍射现象,但发生明显衍射现象的 菲涅尔衍射条件是“苛刻”的。

当障碍物的尺寸远大于光波的波长时,光可看成沿直线传播。注意,光的直线传播只是一种近似的规律,当光的波长比孔或障碍物小得多时,光可看成沿直线传播;在孔或障碍物可以跟波长相比,甚至比波长还要小时,衍射就十分明显。由于可见光波长范围为4×10-7m至7.7×10-7m之间,所以日常生活中很少见到明显的光的衍射现象。

编辑本段

惠更斯-菲涅尔原理

惠更斯提出,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的波迹,就是该时刻新的波阵面。惠更斯-菲涅尔原理能定性地描述衍射现象中光的传播问题。 衍射菲涅尔充实了惠更斯原理,他提出波前上每个面元都可视为子波的波源,在空间某点P的振动是所有这些子波在该点产生的相干振动的叠加,称为惠更斯-菲涅尔原理。

编辑本段

衍射的种类

(1)菲涅尔衍射:光源和观察点距障碍物为有限远的衍射称为菲涅尔衍射。 单缝夫朗和费衍射(2)夫琅和费衍射:光源和观察点距障碍物为无限远,即平行光的衍射为夫琅和费衍射。

包括:单缝衍射、圆孔衍射、圆板衍射及泊松亮斑

(1)狭缝衍射

让激光发出的单色光照射到狭缝上,当狭缝由很宽逐渐减小,在光屏上出现的现象怎样?

当狭缝很宽时,缝的宽度远远大于光的波长,衍射现象极不明显,光沿直线传播,在屏上产生一条跟缝宽度相当的亮线;但当缝的宽度调到很窄,可以跟光波相比拟时,光通过缝后就明显偏离了直线传播方向,照射到屏上相当宽的地方,并且出现了明暗相间的衍射条纹,狭缝越小,衍射范围越大,衍射条纹越宽,。但亮度越来越暗。

试验:可以用游标卡尺调整到肉眼可辨认的最小距离,再通过此缝看 衍射仪光源

(2)小孔衍射

当孔半径较大时,光沿直线传播,在屏上得到一个按直线传播计算出来一样大小的亮光圆斑;减小孔的半径,屏上将出现按直线传播计算出来的倒立的光源的像,即小孔成像;继续减小孔的半径,屏上将出现明暗相间的圆形衍射光环。

编辑本段

衍射的几何理论

应用射线概念分析电磁波衍射特性的渐近理论,简称 GTD。几何理论是单色波场方程的解在频率趋于无限时的极限,因而也是适合于高频情形的渐近解,而这种理论的基本思想是把均匀平面波在无限平界面上的反射和折射、在半无限楔形导体边缘上的衍射和沿圆柱导体表面的爬行波严格解的渐近式,应用于从点源发出的球面波或线源发出的柱面波在圆滑界面上的反射和折射、在弧形导体刃口上的衍射和沿导体凸表面的爬行,并把它作为问题的0阶段近解。

衍射的几何理论

② 反射系数、衍射系数和爬行线的衰减系数采用无限直刃和无限长圆柱上严格解的渐近结果。

③ 投射波、反射波和衍射波的场强各与其主曲率半径的几何平均数成反比,而确定反射波和衍射波曲率矩阵的原则是相位匹配。所谓相位匹配,如图3,设A是衍射点,A┡是其邻点,则,A、A┡两点所在的衍射波面的相位差与 A、A┡两点所在的投射波面的相位差应当相同。

衍射的几何理论最早是由J.B.凯勒于1957年提出来的,后来经许多人的工作而日趋完善,在处理很多异形物体的散射问题以及用数值计算解散射和衍射问题中得到应用。但是,因为严格解的渐近式在阴影区与照明区的过渡区域不能成立,所以在这个区域,GTD 不能应用,为了弥补这一缺陷,J.波斯马等人后来提出一致渐近理论 (UAT)。这个理论的基本思想是,给投射波乘以人为因子,使这因子在照明区内近于1而在阴影区内近于0,在过渡区内则随着场点趋近于照明区边界而无限增大。将这乘了因子的投射波与衍射波的渐近式相加能一致连续,这种理论也得到了广泛的应用。但是,它的基础仅仅是一个估值(ansatz),而且在刃口以及其他焦散线附近,它和 GTD同样不能应用。然而射线理论有很多优点,人们仍在探索改进的途径。

 若干个光波(成员波)相遇时产生的光强分布不等于由各个成员波单独造成的光强分布之和,而出现明暗相间的现象。例如在杨氏双孔干涉(见杨氏干涉实验)中,由每一小孔H1或H2出来的子波就是一个成员波,当孔甚小时,由孔H1出来的成员波单独造成的光强分布 I1(x)在相当大的范围内 干涉图样大致是均匀的;单由从孔H2出来的成员波造成的光强分布I2(x)亦如此。二者之和仍为大致均匀的分布。而由两个成员波共同造成的光强分布I(x),则明暗随位置x的变化十分显著,显然不等于I┡(x)。 

每个成员波单独造成大致均匀的光强分布,这相当于要求各成员波本身皆没有明显的衍射,因为衍射也会造成明暗相间的条纹(见光的衍射)。所以,当若干成员波在空间某一区域相遇而发生干涉时,应该是指在该区域中可以不考虑每个成员波的衍射。

应注意,前面所说的光强并不是光场强度(正比于振幅平方)的瞬时值,而是在某一段时间间隔Δt内光场强度的平均值或积分值;Δt的长短视检测手段或装置的性能而定。例如,人眼观察时,Δt就是视觉暂留时间;用胶片拍摄时,Δt则为曝光时间。

干涉现象通常表现为光强在空间作相当稳定的明暗相间条纹分布;有时则表现为,当干涉装置的某一参量随时间改变时,在某一固定点处接收到的光强按一定规律作强弱交替的变化。

光的干涉现象的发现在历史上对于由光的微粒说到光的波动说的演进起了不可磨灭的作用。1801年,T.杨提出了干涉原理并首先做出了双狭缝干涉实验,同时还对薄膜形成的彩色作了解释。1811年,D.F.J.阿喇戈首先研究了偏振光的干涉现象。现代,光的干涉已经广泛地用于精密计量、天文观测、光弹性应力分析、光学精密加工中的自动控制等许多领域。

编辑本段

产生条件

综述

只有两列光波的频率相同,相位差[1]恒定,振动方向一致的相干光源,才能产生光的干涉。由两个普通独立光源发出的光,不可能具有相同的频率,更不可能存在固定的相差,因此,不能产生干涉现象。

具体方法

为使合成波场的光强分布在一段时间间隔Δt内稳定,要求:①各成员波的频率v(因而波长λ )相同;②任两成员波的初位相之差在Δt内保持不变。条件②意味着,若干个通常独立发光的光源,即使它们发出相同频率的光,这些光相遇时也不会出现干涉现象。原因在于:通常光源发出的光是初位相作无规 光的干涉分布的大量波列,每一波列持续的时间不超过10秒的数量级,就是说,每隔10秒左右,波的初位相就要作一次随机的改变。而且,任何两个独立光源发出波列的初位相又是统计无关的。由此可以想象,当这些独立光源发出的波相遇时,只在极其短暂的时间内产生一幅确定的条纹图样,而每过10秒左右,就换成另一幅图样,迄今尚无任何检测或记录装置能够跟上如此急剧的变化,因而观测到的乃是上述大量图样的平均效果,即均匀的光强分布而非明暗相间的条纹。不过,近代特制的激光器已经做到发出的波列长达数十公里,亦即波列持续时间为10秒的数量级。因此,可以说,若采用时间分辨本领Δt比10秒更短的检测器(这样的装置是可以做到的),则两个同频率的独立激光器发出的光波的干涉,也是能够观察到的。另外,以双波干涉为例还要求:③两波的振幅不得相差悬殊;④在叠加点两波的偏振面须大体一致。

当条件③不满足时,原则上虽然仍能产生干涉条纹,但条纹之明暗区别甚微,干涉现象很不明显。条件④要求之所以必要是因为,当两个光波的偏振面相互垂直时,无论二者有任何值的固定位相差,合成场的光强都是同一数值,不会表现出明暗交替(欲观察明暗交替,须借助于偏振元件)。

以上四点即为通常所说的相干条件。满足这些条件的两个或多个光源或光波,称为相干光源或相干光波。

编辑本段

产生相干光波

综述

由一般光源获得一组相干光波的办法是,借助于一定的光学装置(干涉装置)将一个光源发出的光波(源波)分为若干个波。由于这些波来自同一源波,所以,当源波的初位相改变时,各成员波的初位相都随之作相同的改变,从而它们之间的位相差保持不变。同时,各成员波的偏振方向亦与源波一致,因而在考察点它们的偏振方向也大体相同。一般的干涉装置又可使各成员波的振幅不太悬殊。于是,当光源发出单一频率的光时,上述四个条件皆能满足,从而出现干涉现象。当光源发出许多频率成分时,每一单频成分(对应于一定的颜色)会产生相应的一组条纹,这些条纹交叠起来就呈现彩色条纹。

分波阵面法

分波阵面法。将点光源的波阵面分割为两部分,使之分别通过两个光具组,经反射、折射或衍射后交迭起来,在一定区域形成干涉。由于波阵面上任一部分都可看作新光源,而且同一波阵面的各个部 光的干涉分有相同的位相,所以这些被分离出来的部分波阵面可作为初相位相同的光源,不论点光源的位相改变得如何快,这些光源的初相位差却是恒定的。杨氏双缝、菲涅耳双面镜和洛埃镜等都是这类分波阵面干涉装置。

分振幅法

分振幅法。当一束光投射到两种透明媒质的分界面上,光能一部分反射,另一部分折射。这方法叫做分振幅法。最简单的分振幅干涉装置是薄膜,它是利用透明薄膜的上下表面对入射光的依次反射,由这些反射光波在空间相遇而形成的干涉现象。由于薄膜的上下表面的反射光来自同一入射光的两部分,只是经历不同的路径而有恒定的相位差,因此它们是相干光。另一种重要的分振幅干涉装置,是迈克耳孙干涉仪。

编辑本段

干涉条纹

在各种干涉条纹中,等倾干涉条纹和等厚干涉条纹是比较典型的两种。以上假定光源发出的是单色光(或者用滤光片从光源所发的许多波长的光中取出某一单色光)。当光源发出的许多波长的光皆发生干涉时,会形成彩色干涉条纹(见白光条纹)。

编辑本段

干涉分类

双光波干涉

即两个成员波的干涉。杨氏双孔和双缝干涉、菲涅耳双镜干涉及牛顿环等属于此类。双光波干涉形成的明暗条纹都不是细锐的,而是光强分布作正弦式的变化,这就是双光波干涉的特征。多光波干涉则可形成细锐的条纹。

多光波干涉

即多于两个成员波的干涉。陆末-格尔克片干涉属于此类。图中A为平行平板玻璃,一端开有倾斜的入射窗BC。从S发出的源波经BC进入玻璃片后在其上、下表面间多次反射。每次在上表面反射时,皆同时有一波折射入空气中。所有各次折射入空气中的波就是从同一源波按分振幅方式造成的一组成员波。在透镜L 的焦平面Π上观测干涉条纹。相邻两波在P点的位相差为 公式1式中λ 为光波在真空中的波长,n为玻璃的折射率,t为玻璃片厚度,β 为玻璃片内的光程辅助线与表面法线的夹角。在接收面光强分布的条纹十分细锐,这是多光波干涉的特征。

偏振光的干涉

在以上所举的干涉中,各成员波在考察点处可认为偏振方向大体一致。当参与干涉的两个成员波的偏振面夹有一定角(例如 90°)时,如何产生干涉见偏振光的干涉。

编辑本段

应用

根据光的干涉原理可以进行长度的精密计量。例如用迈克耳孙干涉仪校准块规的长度。其方法如下,用单色性很好的激光束(波长为 λ)作为光源,并在迈克耳孙干涉仪的可动镜臂上装有精密的触头,先使触头接触块规的一端,然后撤去块规,令可动镜移动。这时,每移动λ/2,两臂中光路的光程差就增加λ,从而置于干涉视场中心的检测器就输出一次强弱变化,使记数器的数字增加 1。直到触头接触基面(块规的另一端面原来放在基面上)为止。若记数器总共增加的数为n,则测得块规的长度为

公式2精密的装置可以把n精确到±0.1以下,于是测量长度的误差不超过±λ/20。

利用干涉现象还可以检测加工过程中工件表面的几何形状与设计要求之间的微小差异。例如要加工一个平面,则可首先用精密工艺制造一个精度很高的平面玻璃板(样板)。使样板的平面与待测件的表面接触,于是此二表面间形成一层空气薄膜。若待测表面确是很好的平面,则空气膜到处等厚或者是规则的楔形。当光照射时,薄膜形成的干涉光强呈一片均匀或是平行、等间隔的直条纹。如果待测表面在某些局域偏离了平面,则此处的干涉光强与别处不同或者干涉条纹在该处呈现弯曲。从条纹变异的情况可以推知待测表面偏离平面的情况。偏离量为波长的若干分之一是很容易观察得到的。

编辑本段

说明

①在交迭区域内各处的强度如果不完全相同而形成一定的强弱分布,显示出固定的图象叫做干涉图样。也即对空间某处而言,干涉迭加后的总发光强度不一定等于分光束的发光强度的迭加,而可能大于、等于或小于分光束的发光强度,这是由波的叠加原理决定的(即波峰和波峰相加为两倍的波峰)。

②通常的独立光源是不相干的。这是因为光的辐射一般是由原子的外层电子激发后自动回到正常状态而产生的。由于辐射原子的能量损失,加上和周围原子的相互作用,个别原子的辐射过程是杂乱无章而且常常中断,持续对同甚短,即使在极度稀薄的气体发光情况下,和周围原子的相互作用已减至最弱,而单个原子辐射的持续时间也不超过10^-8秒。当某个原子辐射中断后,受到激发又会重新辐射,但却具有新韵初相位。这就是说,原子辐射的光波并不是一列连续不断、振幅和频率都不随时间变化的简谐波,即不是理想的单色光,而是如图所示,在一段短暂时间内(如τ=10-8s)保持振幅和频率近似不变,在空间表现为一段有限长度的简谐波列。此外,不同原子辐射的光波波列的初相位之间也是没有一定规则的。这些断续、或长或短、初相位不规则的波列的总体,构成了宏观的光波。由于原子辐射的这种复杂性,在不同瞬时迭加所得的干涉图样相互替换得这样快和这样地不规则,以致使通常的探测仪器无法探测 光的干涉这短暂的干涉现象。

尽管不同原子所发的光或同一原子在不同时刻所发的光是不相干的,但实际的光干涉对光源的要求并不那么苛刻,其光源的线度远较原子的线度甚至光的波长都大得多,而且相干光也不是同一时刻发出的。这是因为实际的干涉现象是大量原子发光的宏观统计平均结果,从微观上来说,光子只能自己和自己干涉,不同的光子是不相干的;但是,宏观的干涉现象却是大量光子各自干涉结果的统计平均效应。

③由于六十年代激光的问世,已使光源的相干性大大提高,同时快速光电探测仪器的出现,探测仪器的时间响应常数缩短,以至可以观察到两个独立光源的干涉现象。另,在现在的高中课本中,已经有光的干涉实验,用激光或者同一灯泡通过双缝进行实验).

1963年玛格亚和曼德用时间常数为10^-8~10^-9秒的变像管拍摄了两个独立的红宝石激光器发出的激光的干涉条纹。可目视分辨的干涉条纹有23条。

④相干光的获得。对于普通的光源,保证相位差恒定成为实现干涉的关键。为了解决发光机制中初相位的无规则迅速变化和干涉条纹的形成要求相位差恒定的矛盾,可把同一原子所发出的光波分解成两列或几列,使各分光束经过不同的光程,然后相遇。这样,尽管原始光源的初相位频繁变化,分光束之间仍然可能有恒定的相位差,因此也可能产生干涉现象。

⑤光的干涉现象是光的波动性的最直接、最有力的实验证据。光的干涉现象是牛顿微粒模型根本无法解释的,只有用波动说才能圆满地加以解释。由牛顿微粒模型可知,两束光的微粒数应等于每束光的微粒之和,而光的干涉现象要说明的却是微粒数有所改变,干涉相长处微粒数分布多;干涉相消处,粒子数比单独一束光的还要少,甚至为零。这些问题都是微粒模型难以说明的。再从另一角度来看光的干涉现象,它也是对光的微粒模型的有力的否定。因为光总是以3×10^8m/s的速度在真空中传播,不能用人为的方法来使光速作任何改变(除非在不同介质中,光速才有不同。但对于给定的一种介质,光速也是一定的)。干涉相消之点根本无光通过。那么按照牛顿微粒模型,微粒应该总是以3×10^8m/s的速度作直线运动,在干涉相消处,这些光微粒到那里去了呢?如果说两束微粒流在这些点相遇时,由于碰撞而停止了,那么停止了的(即速度不再是3×lO^8m/s,而是变为零)光微粒究竟是什么东西呢?如果说是移到干涉相长之处去了,那么又是什么力量使它恰恰移到那里去的呢?所有这些问题都是牛顿微粒模型根本无法回答的。然而波动说却能令人信服地解释它,并可由波在空间按一定的位相关系迭加来定量地导出干涉相长和相消的位置以及干涉图样的光强分布的函数解析式。

因此干涉现象是波的相干迭加的必然结果,它无可置疑地肯定了光的波动性,我们还可进一步把它推广到其他现象中去,凡有强弱按一定分布的干涉图样出现的现象,都可作为该现象具有波动本性的最可靠最有力的实验证据。

编辑本段

参考书目

M.玻恩、E.沃耳夫著,杨葭荪等译校:《光学原理》,上册;黄乐天等译校:《光学原理》,下册,科学出版社,北京,1978,1981。(M.Born and E. Wolf,Principles of Optics,5th ed.,Pergamon Press,Oxford,1975.) F. A. Jenkins and H. E. White,Fundamentals of Optics,4th ed.,McGraw-Hill,Kogakusha,1976.

关于“牛顿一生发明了多少东西?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[hzjyqz]投稿,不代表金永号立场,如若转载,请注明出处:https://hzjyqz.cn/jyan/202507-4814.html

(11)
hzjyqz的头像hzjyqz签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • hzjyqz的头像
    hzjyqz 2025年07月20日

    我是金永号的签约作者“hzjyqz”

  • hzjyqz
    hzjyqz 2025年07月20日

    本文概览:网上有关“牛顿一生发明了多少东西?”话题很是火热,小编也是针对牛顿一生发明了多少东西?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。艾...

  • hzjyqz
    用户072001 2025年07月20日

    文章不错《牛顿一生发明了多少东西?》内容很有帮助